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A new numerical scheme is proposed for generating an orthogonal
grid in a simply-connected 20 domain. The scheme is based on the idea
of decomposition of a global orthogonal transform into consecutive
mappings of a conformal mapping and an auxiliary orthogonal map-
ping. which was suggested by Kang and Leal (/. Comput. Phys. 102,
78 (1892)). The method is non-iterative and flexible in the adjustment
of grid spacing. The grid spacing can be controlied mainly by specifica-
tion of the boundary correspondence up to three sides of the baundary.
The method is also equipped with a contrel function that provides
further degrees of freedom in the grid spacing adjustment. From a
mathematical viewpoint, the proposed scheme can also be regarded as
a numerical implementation of the censtructive proof for the existence
of a solution of the orthogonal mapping problem in an arbitrary simply-
connected domain under the condition that the boundary corre-

spondence is specified on three sides.  © 1994 Academic Press, Inc.

1. INTRODUCTION

The generation of boundary-fitted orthogonal coor-
dinates for a given fixed 2D domain is a long-standing
problem of theoretical and practical importance and many
methods have been proposed. The most well-known
orthogonal mappings are the conformal mappings. Indeed,
several efficient methods for numerical construction of
conformal mappings have been developed (see the book by
Thompson er af. [1] and the papers by Fornberg [2] and
Symm [3] and the references therein). However, one signifi-
cant deficiency in the conlormal mapping is the non-
adjustability of grid spacing. Thus, the methods of
orthogonal grid gencration have been developed ina way to
cnlarge the Mexibility in adjustment ol grid spacing. The
numericil scheme proposed in this work is also the result of
such an attempt.

In the present work, we are concerned with a non-iterative
numerical scheme for generating an orthogonal grid in an
arbitrary simply-connected 2D domain, the grid points for
which are specified at three sides of the domain. All other
grid points including the boundary points on the fourth side
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are determined during the solution process of the mapping
problem. The grid generation problem may be represented
asshown in Fig. |, where £, and £2, denote the physical and
computational domains, respectively. Then, the problem we
arc concerncd with can be stated as to find an orthogonai
trunsformation between the points in the computational
domain ((£, ) e £2,) and the points in the physical domain
({x, ryef2)),

T, {& el - (xy)eQ,, (1)
under the condition that the correspondence is specified on
three sides of the boundary but the other conditions are free.

The numerical scheme proposed in the present work has
predecessors. Kang and Leal [4] proposed a non-iterative
numerical scheme for orthogonal grid generation under the
condition that the boundary correspondence is specified on
fwo adjacent sides of the boundary. In their method, all
other grid points including the boundary points on the two
unspecified sides are determined during the process of solu-
tion. In order to devise a non-iterative scheme, Kang and
Leal proposed the idea of decomposition of a global
orthogonal mapping into consecutive mappings of a confor-
mal mapping and an auxiliary orthogonal mapping. Then
they incorporated their idea in the so-called covariant
Laplace cquation method, in which the global mapping is
found as the solutions of two covariant Laplace equations.
The use of covariant Laplace equations as the grid generat-
ing equations was first proposed by Ryskin and Leal [5] as
part of their grid generation scheme.

In our numerical scheme, Kang and Leal’'s method is
improved in a way to enlarge the flexibility in adjustmnet of
the grid spacing while the advantage of the non-iterative
algorithm is maintained. The number of sides, where the
boundary correspondence can be specified a priori, is
increased to three from .rwo, As will be shown later, this
improvement was made possible by adding an orthogonal
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FIG. 1. Orthogonal grid peneration in a simply-connected domain

with specified boundary correspondence on three sides (£2,: the physical
domain, 2, : the computational domain).

grid generation technique for rectangular domains to their
method.

Since our scheme is based on Kang and Leal’s method, it
is very important to understand the covariant Laplace
equation method and the idea of the decomposition of
orthogonal mapping. Therefore, as preliminaries, the
covariant Laplace equation method will be briefly reviewed
in Section 2 with discussions on the related grid generation
schemes, and the idea of decomposition of orthogonal map-
ping will be reviewed in Section 3. Then, in Section 4,
detailed discussions will be given to the modifications made
in this work to improve the numerical scheme of Kang
and Leal.

2, COVARIANT LAPLACE EQUATION METHOD

In the covariant Laplace eguation method, an orthogonal
mapping between the physical (x, y}-domain and the
computational (£, n)-domain can be found by solving two
covariant Laplace equations

il ox ¢ {10x

PSS LAY U 2
32 (f 6é)+5n (fan) ’ (22)
o oy i(l@_y)=

a&(f 6é)+6n 7on) = (2b)

with suitable boundary conditions (see Ryskin and
Leal [5]). In {2), fis the distortion function defined by

ot _ [ @xfon)* + (@vion)*
he  J(@x/acy + (ay/osy

However, the problem in the covariant Laplace equation
method is that the governing equations are highly nonlinear
and consequently very litile is known about their general
properties. Especially, much work has to be done to answer
the following questions (see also the discussions in Kang
and Leal [4], and Ryskin and Leal [5]):

13%

(i} What are the suitable boundary conditions that
guarantee the existence of a solution?

{ii) If a solution exists, what kind of constraint do we
need to obtain a unique solution?

Despite of lack of understanding on the governing equa-
tions, the covariant Laplace equation method has been
applied in various forms to generate orthogonal grid
systems. In their original paper, Ryskin and Leal proposed
an ad hoc “weak constraint” method for generating an
orthogonal mapping in a given fixed domain. In the weak
constraint method, the positions of the grid points are
specified on all sides of the boundary but the distortion
function, f(¢, n), is adjusted in the course of solution to
achieve orthogonality under certain rules (weak con-
straints). Although several examples are given in their
paper, there are two weak points in the method of Ryskin
and Leal. First, the existence proof is not available for the
mapping problem posed in their method. Second, the solu-
tion method is based on the irerative adjustment of the
distortion function. In view of strong nonlinearities in the
governing equations, the convergence of the iterative
scheme is not guaranteed. Although there is a report that
the convergence of the weak constraint method can be
significantly improved by a Bubnov-Galerkin formulation
{61, the question of the existence proof and the convergence
still remains.

In spite of disadvantages in the form of the weak con-
straint method, the work of Ryskin and Leal has motivated
researchers to seek more successful schemes that are based
on the covariant Laplace equation method. Most of
schemes developed so far can be classified into one of the
following categories according to the grid spacing control:

(i) Class I, The distortion function f(£, n) is specified a
priori, but the consistent boundary conditions to the
specified (&, ) are found as part of the solution.

(ii) Class 2. The boundary correspondence is specified
on some or all sides of the boundary a priori, but the
suitable distortion function f(£, ) is found as part of the
solution.

For the Class 1 methods, the existence of the solution can
be proved without difficulty if the distortion function is
specified in the product form as f(£, n)=11(£) O(n) (see
Kang and Leal [4]). Among such Class 1 methods, two
methods are noteworthy (Duraiswami and Prosperetti [ 7],
and Kang and Leal [47). Duraiswami and Prosperetti
developed a scheme based on the theory of quasi-conformal
mapping and the covariant equation method. In their
scheme, the conformal module is found first by solving a
Laplace equation by the boundary integral technique. Then,
with the aid of the module, the covariant Laplace equations
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in Eq. (2) are solved subject to the orthogenality condition
at the boundary:

oo o 0r &
aédy o on

The governing equations with spectfied f(£, ) are linear,
but the boundary conditions are still nonlinear. Thus, they
proposed an iterative scheme for solving the mapping
problem. On the other hand, Kang and Leal [4] proposed
a non-iterative scheme based on the idea of decomposition
of the orthogonal mapping. which will be discussed in the
following section. The essence of their method is that, when
the distortion function is given in the form f{(¢&, n)=
II{(&) @(n), the coupled governing equations in (2) can be
transformed into two uncoupled linear partial differential
equations with Dirichlet boundary conditions.

In the same paper, Kang and Leal proposed also a
method in Class 2, which can generate an orthogonal grid
systemn noniteratively when the boundary correspondence is
specified at two adjacent sides but the other conditions are
free. In fact, their Class 2 scheme is the basis of our new
scheme proposed in this paper. Thus, their scheme will be
discussed in the following section.

3. DECOMPOSITION OF ORTHOGONAL TRANSFORM

Kang and Leal [4] suggested that an orthogonal
mapping between a given computational domain and a
rectangular computational domain (denoted as 7,: (£, ) e
Q.- (x,y)e,) can be decomposed into segential map-
pings of a conformal mapping (denoted as T,.: (1, v} e 2, —
(x, y) e £2.) and an auxiliary orthogonal mapping (denoted
as T5:({,n)e 82— (w,v)e2,) as shown in Fig. 2. In the
figure, 2., Q., and £2, denote the physical, the computa-
tional, and the rectangular auxiliary domains, respectively.
The symbols 402, and JD,; denote the sides of the physical
and auxiliary domains. In Fig 2, we have scaled the
auxiliary and computationai domains for convenience. The
rectangular auxiliary domain is scaled to have 0 <u < 1 and
0 < v < v* where v¥ is not free, but it must be determined by
the Cauchy-Riemann condition of the conformal mapping,
as will be explained later {or see [4]). The computational
domain is scaled to have 0<&<1 and O0<y<y* Dif-
ferently from ©v*, #* can be chosen arbitrarily. But in this
specific example of a 21 x 21 grid system, we chose n* =1
for convenience.

The decomposition of orthogonal mapping can be
written more formally as

T,=1.T, (4)

The key observation in the decomposition is that the distor-
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FIG. 2. Decomposition of an orthogonal mapping inte a conformal
mapping and an auxiliary mapping (£,, the physical domain; £2,, the
computational domain; §2,, the auxiliary domain; 9Q,, the ith side of the
physical domain; 8D, the ith side of the auxiliary domain).

tion function for the global mapping, f, is the same as that
for the auxiliary mapping, f; i.c.,

fEm=7En Vi nee, (5)
where 7(&, n) is the ratio of scale factors ﬁ,, and 55 for the
auxiliary mapping defined as

hy _+/(0ufon) + @vjon)’
Fe J(0u)ae) + (00j0F)7

The relation (3) follows from the fact that the distortion
function for the global mapping is the product of the distor-
tion functions of two sequential mappings (f = £, ) and the
distortion function for the conformal mapping is unity
{(fe=1}

The significance of the above decomposition is that, given
an orthogonal grid in the auxiliary domain (£2,), the corre-
sponding orthogonal grid in the physical domain (€2.) can
be easily generated by using the important relation (5).
Thus, a difficult problem of generating an orthogonal grid
in the physical domain can be effectively reduced to a
simpler problem of generating an orthogonal grid in the
rectangular auxiliary domain. (Of course, some conditions
imposed in the global mapping problem must be trans-

A& = (6)
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formed first to the corresponding conditions for the
generation of an orthogonal grid in the rectangular
auxiliary domain. However, as will be shown later, this
transforming process of the given conditions is simple. That
is especially the case when the boundary correspondence is
specified at some sides.)

Now Jet us return to the problem of finding the
orthogonal grid in the physical domain (£2,) which
corresponds to a given orthogonal grid in the auxiliary
domain (£2,). As we can see in Fig. 2, the transform between
2. and @, is the conformal mapping. Thus, in principle, we
can construct a grid in £ by conformally transforming each
grid point in £, to obtain the corresponding point in £ ..
However, in practice, no simple scheme is available for that
purpose, Therefore, we seek a different route. We view the
grid system, which we want to find in €2, as the global
orthogonal transform of the grid system in the computa-
tional domain (ie, x,=x/(&;,n,), ¥,= v;(¢;,n,)) rather
than as the conformal transform of the given grid system in
the auxiliary domain (ie., x;=x{u;, v,), ¥y,= y;(u, v)). If
we take the indirect way, the problem can be solved in a sur-
prisingly simple way. In order to find the global orthogonal
mapping, we can use the covariant Laplace equation
method. The covariant Laplace equations in (2} can be
transformed into two wncoupled linear equations with
Dirichlet boundary conditions and can be easily solved to
produce an orthogonal grid system in the physical domain,
if we have

{i) the specified distortion function, f{£, »), and

{ii) the specified boundary correspondence on all sides
of (£2,), which is consistent to f{&, ).

Here we should note that the boundary correspondence
cannot be specified arbitrarily but that it must be specified
in a consistent way to the given f(<&, n) to guarantee the
orthogonality of the resulting grid system. When an
orthogonal grid is given in the (%, v)-domain, the above two
pieces of information are obtained as foliows.

Since we have an orthogonal grid in the {u, r)-domain
(i.e., we have an orthogonal transform (u=u{&, ), v=
v(&, #))), all the derivatives in (6) can be evaluated
numerically. Thus, the distortion function for the global
mapping at each grid point can be obtained by the
formulae (5) and (6). The only thing left is then to find the
consistent boundary grid points of the physical domain. As
is well known, the conformal mapping ensures the
orthogonality of the grid system in the physical domain
{(except for the non-orthogonally intersecting corner points
of the boundary), if the given grid system in the auxiliary
domain is orthogonal. Thus, the consistent boundary points
that we want to find are only the conformal transformation
of the boundary points of the auxiliary domain.

The consistent boundary grid points can be easily
obtained by using the boundary integral technique. Since
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FiG. 3. Two conjugate Laplace equations with boundary counditions
for the conformal mapping.

the information that we want to obtain from the conformal
mapping part is only the boundary correspondence between
£, and 2, it is convenient to consider the inverse mapping
T u=u(x,y), v=uv(x,y), in view of the complicated
geometry of the physical domain (see Fig. 2). The inverse
mapping T7' is also conformal, and governed by two
conjugate Laplace equations:

8u &% v &
Viu=—+:5=0, Vo=_5+-—5=0 7
vt ay? = ay? (7)
To find 7', we need boundary conditions for the con-

jugate Laplace equations as shown in Fig. 3, where n and s
denote the outward unit normal and the arclength along the
boundary, starting from a reference point. In the figure, the
boundary conditions ¥ =0, y=1, v =0, and v =v* are due
to the scaling we have chosen for the auxiliary domain
(0su<1, 0<v<o*), and the conditions du/dn=0 and
dv/dn =0 are due to the orthogonality of the conformal
coordinates at the boundary. As mentioned earlier, v* is the
maximum value of v and it determines the aspect ratio of the
rectangular (u, v)-domain, As explained in Kang and
Leal [4], the w-problem can be solved first by using the
boundary integral technique and then v* can be determined
from the Cauchy-Riemann condition

ou dv
s (8)
along the boundary d€2,. As we see in the figure, u(s) on €2,
and 3£2,, and (4u/dn)(s) on R, and 30, are obtained from
the boundary integral solution of the u-problem. Thus, v*
can be determined by integrating (8) as

Ju
* -
v Lm (6;1) os.

Then, the z-problem can be solved similarly to obtain »(s)
on 0f2, and 0%2,.

(9)



142

After two boundary integral solutions are obtained, we
have a compiete description for u and v as functions of the
arclength
v=v(s).

u=u(s), {10)

Here, we should note that one of uis} and o{s) is a
monotonic function (the other is constant) and its inverse
exists on each side of the boundary. The information in (10)
can be used to obtain the boundary correspondence
between the physical domain and the auxiliary domain. Let
us first consider a given point on the boundary of the physi-
cal domain, Then the arclength to the point, s, is determined
to compute u(s) and v(s) values. The obtained values (u, v)
define the corresponding boundary point of the auxiliary
domain. Conversely, if a boundary point is given at a certain
side of the auxiliary domain (i.e., (u, v} is given), then one of
two functions in {10) is a monotonic function on the corre-
sponding side of the physical domain. Thus, the arclength s
to the corresponding point of physical domain is obtained
by tnverting the monotonic function. Since the (x, v)-
coordinate of the boundary point can be represented as
x=2x(s) and p= p(s), the x and p values for the the
corresponding boundary point are determined.

Kang and Leal applied the above idea of decomposition
to generate an orthogonal grid in a 2 domain when the
boundary correspondence 1s specified on two adfacent sides
of the boundary as shown in Fig. 4. In Fig. 4, the boundary
correspondence is specified at the sides 42, and 942,. The
method of Kang and Leal can be summarized as:

{i) By using the information from the boundary
integral solution, the grid points on the two corresponding
adjacent sides of the auxiliary (e, v)-domain (ie., D, and
2D;) are determined.

{ii) An orthogonal grid is generated in the auxiliary
{(u, v)-domain under the assumption that the corresponding
points on the opposite sides have the same u- or p-values.
Under this assumption, the grid system is simply a non-
uniform rectangular grid as shown in Fig. 4. In this case,
the orthogonal transform between (u, v)-domain and
(¢, )-domain can be represented by u=u(f)=u,(¢) and
v=1u(n)=r1v,{n), where u,(&) and v,{n) denote the specified
boundary correspondences on 8D, and 6D, that are
obtained in the step (i).

(fii) By using the formulae (5) and (6), the distortion
function for the global mapping, 7(&, n) is computed for all
grid points.

(iv) The boundary grid points on 32, and 42, of the
physical domain corresponding to the sides 8D, and D, of
the auxiliary domain are determined by using the informa-
tion from the boundary integral computation.
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FIG. 4. The idea of decomposition of orthogonal mapping as was used
in Kang and Leal [4] (only the simple orthogonal grid generation
u=u(<), v =v(y) was considered for the auxiliary domain).

(v) The covariant Laplace equations in (2) with
specified f(Z, ) are solved with the Dirichlet type boundary
conditions.

Thus far, we have discussed the method of Kang and
Leal. As mentioned earlier, our new scheme is also based on
the idea of decomposition of orthogonal transform, and it
can be considered as an improved version of their scheme.
In the following section, a detailed discussion will be given
to what is added in our scheme to improve Kang and Leal's
method.

4. ORTHOGONAL GRID GENERATION IN A
RECTANGULAR AUXILIARY DOMAIN

As discussed in the preceding section, the global mapping
problem can be effectively reduced to the problem of
orthogonal grid generation in a rectangular auxiliary
domain. Thus, the most important step in our method
should be the generation of an orthogonal grid in a
rectangular (u, v)-domain under the condition that the
boundary correspondence is specified on three sides. We are
now concerned with this subproblem,

Let us consider the global mapping problem and see
again the physical domain in Fig.2. The grid system in
Fig. 2 was prepared with the specified boundary corre-
spondence on three sides, 992, 812,, and 0€2;. The first step
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FIG. 5. The procedures for generating an orthogonal grid in a rectangular domain: (a) The specified boundary correspondence on three sides is
obtained from the given boundary correspondence for the physical domain; (b) The boundary points on 8D, and 8 are connected according to (117;

(c) The # = const lines are found.

in our scheme starts with finding the boundary points on the
corresponding sides of the rectangular auxiliary domain
(ie, oD, &D,, and éD,) by using the information from the
boundary integral solution. After this step, for the auxiliary
(1, v)-domain, we have the specified boundary corre-
spondence on threc sides as shown in Fig. 5a. Now, we want
to generate an orthogonal grid in the rectangular auxiliary
domain according to the procedures shown below.

First, we connect the grid points on ¢P, and éD,
smoothly and orthogonally at the boundaries. To do that
we assume that we have continuous functional relationships
E=p(u) on éD, and ¢ = p;(u) on 8D,, even though we
have discrete information on the functional relationships.
Then we assume that & value at the internal points of
(2, v)-domain can be represented as

&= ps(u) + [ pr(w) — ps(u)] q(v), (11)
where g(v) is a monotonically increasing function that
satisfies the four conditions

q(0)=0, g(v*)=1, ¢'(0)=0, ¢g{*)=0. (12)
The last two conditions are from the orthogonality condi-
tion 3{/fv=0 at 4D, and #D;. In fact, infinitely many
monotonic functions for g{v) can satisfy the four conditions.
As will be shown later, this fact provides a considerable
degree of freedom in the grid spacing adjustment; ie., g(v)
can be used as a control function. Several reasonable
candidates for the control function include

w5 () sl (5 0
v v v v
and

q(u)-——%[l + sin (:—*n—g):,+a[l —cos 2 (vi*) n],

(14)

S81/112/1-10

where g can be considered as a control parameter for the
adjustment of grid spacing and the range of a is limited by
the condition of monotonic function.

Now the functions p,(u) and p,(u) are constructed as
piecewise smooth functions by using the discrete informa-
tion given on the sides 4D, and éD; as

V| —u U~y
pilu)= (m) ff+(m) &ivy (15)

i+1 i+1 i

foru! <u<ul) on dD,, and

u~—u'd

u 5? U 16
ri= (5 ) oo+ () e 09
for u¥) <u<u®® on aD,, where u!"’ (or u{*') denotes the
u-value of the boundary grid point at £=¢, on éD, (or
2D,). The accuracy of the approximation may be improved,
but here we adopt the above simple representation for
convenience.

After this step, we have the coordinate lines in
{#, v)-domain corresponding to £=¢, i=1,2,..n, as
shown in Fig. 5b. {In principle, we can find those lines by
inverting the functional relationship (11) for given ¢ and v.
However, we do not have to generate the coordinte lines
explicitly. In fact, the internal grid points are determined by
the procedure that will be explained later. Nevertheless, for
the moment, we assume that we have those grid lines for
better understanding). Now, we want to generate # = const
coordinate lines. This goal can be easily achieved by using
the fact that the unit tangent to the line of # = const coin-
cides with the unit normal to the & = const line at the grid
point.

Let [ be the arclength along the # = const line measured
from the grid point on 8D,. Then the orthogonality imposes
refations

di 0%/ dv

due _ _ aE/ov
al [(6¢[au)? + (8E[dv)*

dl J(3&/ou)? + (8E/ov )
(17)
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As we have seen in (11), £ is given as a function of w and v.
Thus du/di and dv/d! are also functions of  and v; i.e., they
are given for each n =y, line in the forms as

U

%=f1(“= v), %=f2(“, v) _

(18a), {18b)
u=0at/=0 v=vPatl/=0,
where v!* is the v value of the grid point at 8D, corre-
sponding to the # =g, line. Now, the system of ordinary
differential equations (18) can be integrated numerically. In
the course of integration, the ¢ value is evaluated by (11)
and is compared with the &, values. Since ¢ is a monotoni-
cally increasing function of /, we can easily find the v and v
values for the grid point corresponding to (&, n,). Then,
we assign the v and v values as (u;, v;) for the grid point
corresponding to ({,;,7,). In this way, we generate an
orthogonal grid system in a rectangular domain as shown in
Fig. 5¢c.

Now we compute the distortion function (¢, #) at each
grid point of the (u, U)-domairl.. Since we have (u, (., n),
v,(&;, n;)) for all grid points, f{Z,, ;) can be numerically
evaluated at each point by the formula

?

- h
fCuny==" (19)
helan

where

(Gufom)? + (@ofon)?,
@ufag) + (du/agy.

h, =
Ef=

Then we assign (&, n;) to f(&;, ny) for the distortion func-
tion for the global mapping according to Eq. (5). During the
course of finding the n =y, lines in the (u, v)-domain, we
also find the boundary grid points on JD,. We again
transform this boundary information on 4D, to find the
boundary grid points on 882, of the physical domain by
using the boundary integral solution shown in Section 3.

Now, we arc equipped with all the necessary informa-
tion for the governing covariant Laplace equations in (2), 1.e.,
the Dirichlet type boundary conditions and the distortion
function f(&, 7). Here we should note that the boundary
points of the physical domain (the specified points on J82,,
J€2,, 0624, plus the obtained points on 12,,) form the consis-
tent boundary correspondence to the obtained f(&, 1)
because the grid is orthogonal at all the conformally corre-
sponding points of the auxiliary domain. As mentioned
earlier, the equations are urcoupled and linear and can be
solved very easily to find an orthogonal grid in the physical
domain.

Before presenting several examples of the orthogonal grid
systems generated by the new scheme, we want to show that
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the Class 2 scheme of Kang and Leal is a'special case of our
more general scheme. The specification of boundary corre-
spondence on two adjacent sides (80, and 8£2,) as shown in
Fig. 4 is equivalent to the specification of boundary corre-
spondence on 60, and éD; of the auxiliary domain. The
extra constraint in their scheme that the corresponding
points of the opposite sides have the same u- or v-values (see
step {ii} of their scheme in Section 3) is equivalent to taking
the assumption that p,(#}= p+(u) in our method. As we can
see in (11), if p,(u) = pi(u). then & = const lines are straight
and consequently # = const lines also become straight. Thus
we have the non-uniform rectangular grid system in
(u, v)-domain as shown in Fig. 4. Therefore, in addition to
arbitrary specification on D, and 8D,, if we specify the
boundary correspondence at 82, in a way to satisfy the
constraint p,(u)= p,(u), then our scheme reduces to the
scheme of Kang and Leal,

5. EXAMPLES OF APPLICATIONS

5.1. Numerical Specifications

We have applied the proposed scheme to generate several
cithogonal grid systems. The detailed characteristics of the
generated grid systems will be discussed in the following
subsections. In this subsection, we }imit our discussion to
more general information that has been adopted in all the
sample grid generation problems.

In our numerical scheme, we need three different kinds of
basic numerical tools:

(i) The boundary integral technique for solving the
conjugate Laplace equations in (7).
(i1) The numerical integrator for the ordinary differen-
tial equations in {17).
(ili) The linear PDE solver for the covariant Laplace
equations in (2) with Dirichlet boundary conditions.

For the part of boundary integral computation, we specified
the nodal points of the boundary elements in a way that the
nodal points coincide with the boundary grid points on
three specified sides of the boundary. For the unspecified
fourth side, the nodal points were taken based on the equi-
distance element. For an (N, + 1) x (N, + 1) grid system,
the total number of nodal points was 2x (N, + N, ). The
above choice was made mainly for convenience. In fact, the
number and positions of nodal points may be chosen
independently of the specified boundary grid points.

For the integration of ordinary differential equations in
{17}, we have used the fourth-order Runge-Kutta method
with the step size of integration 4/ =102 (we have tested
several cases with a finer step size A7=107*, but the results
were almost identical ).

The covartant Laplace equations in (2) with specified
f(&, n) and Dirichlet boundary conditions can be trans-
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formed to two wuncoupled systems of linear algebraic
equations after discretization (one for x-coordinates and
the other for y-coordinates). For an {N:+ 1) x (N, + 1)
grid system, each system of linear algebraic equations has
(N;—1)x(N,— 1) unknowns. In the present study, we
have used the ADI method to solve the systems of linear
algebraic equations. The convergence check for this ADI
step was made by the criterion

|maximurm residual| < 1077,

We have also checked the convergence with more stringent
ctiterion of 10~7 in several cases, but we could not find any
considerable change in solutions.

The orthogonality of each genmerated grid system was
tested in the same way as in Chikliwala and Yortsos [8]
and Allievi and Calisai [6]. At all grid points, the angle was
. evaluated according to

XeXy+ Ve ¥y
(xz+ya" (x4 )

cos 0= (20)

As the measures for the degree of deviation from
orthogonality, two indices MDO and ADQO were adopted,
where MDO represents the maximum deviation from
orthogonality and is defined by

MDO = max

iJ

(21)

TC
5—"“{*

and ADO represents the average deviation and is defined by

Z_9

ADO = > g

. (22)

(N + 1)(Nn+1)§

for an (N, + 1) x (¥, + 1} grid system.
In the following subsections, several grid systems
generated by our new scheme will be presented. All
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computation for grid generation was made with double
precision on the workstation MIPS CR3240).

5.2, Orthogonal Grid Generation in an Asymmetric Wavy
Region

As a first example, we considered orthogonal grid gencra-
tion in an asymmetric wavy region as shown in Fig. 6.
The same geometry was considered also by previous
investigators [6, 8. As in Chiliwala and Yortsos [8], the
right side of the boundary (corresponding to {=1) is
defined by

x=0.75+ H cos(ny), O<y<l (23)
To generate grid systems, we specified the boundary corre-
spondence on the top (y=1 corresponding to »p=1),
bottom (y =0 corresponding to =0}, and left (x=0
corresponding to £ =0) sides. For the top and bottom sides,
the boundary grid points were spectfied based on the equi-
distance distribution. For the left side, we considered the
following two cases;

(i) Equidistance correspondence, ie., y=1.

(1} Downward shifted ¢orrespondence according to
y=1—[02(1 —g}+ 0.8 sin(n/2)(1 —x)].

For the control function g(v), which is defined in (11), we

used
2 3
wo=s(2) (2]

(24)

"In Fig. 6, the grid systems generated with the shifted bound-

ary correspondence are shown for the H values 0.25, 0.35,
and 0.45. The orthogonality characteristics of the grid
systems will be discussed later. (For the cases of equi-
distance correspondence on the left side, only the
orthogonality characterists will be given later.)

FIG. 6. Orthogonal grid systems generated in asymmetric regions {top side (y =1); bottom side ( y = 0); left side (x=0); right side (x=0.75+
A cos(ny))): (a) H=0.25; (b) H=0.35; (c) H=045. The boundary correspondence was specified on the top, bottom, and left sides (top and bottom

sides, equidistance; left side, y=1— [0.2(1 —#) + 0.8 sin(=/2){1 —n)} ).
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F1G. 7. Orthogonal grid systems generated in asymmetric regions (top side { y = 0.75 + H cos(zx)); bottom side ( y

b

0); left side (x = 0); right side

{x=1))(a) H=0.15; (b) H=025, (c) H=0.35. The boundary correspondence was specified on the top, bottom, and left sides (top side, x = ¢&; bottom
side, equidistance; left side, y = (0.75 + H)[1 ~ {0.2(1 —#) + 0.8 sin(w/2}1 —#) } 1.

In our scheme we can specify the boundary corre-
spondence up to three sides. In order to generate orthogonal
grid systems with different choices of the specified sides, we
considered the geometry as shown in Fig. 7. The geometry
was considered only for convenience in the specification of
the boundary correspondence and in fact is the same as that
considered in Fig. 6. As in other examples, the boundary
correspondence is specified on the top, bottom, and left
sides. The boundary grid points on the top side were
specified according to (x=¢£, ¥y =0.75+ H cos(n{)) and at
the bottom side according to the equidistance corre-
spondence. For the left side, we considered also the two
cases of boundary correspondence: the equidistance corre-
spondence and the downward shifted correspondence as for
the cases in Fig. 6. In Fig. 7, the grid systems generated with
the shifted boundary correspondence are shown for

H=0.15, 0.25, and 0.35. As we can see in Fig. 7c, the.

crowding phenomenon near the upper right corner becomes
serious as H increases (sce Menikolf and Zemach [9] for a
detailed discussion on the crowding phenomenon). When
the equidistance boundary correspondence was adopted for
the left side, the crowding phenomenon was more serious
and successful grid systems could not be obtained for the
cases H = 0.35.

TABLE I

Orthogonality Characteristics of the 21 x 21 Grid Systems

MDO-ADO (degrees)

Geometry Correspondence H=0.15 H=025 H=035 H=045

Fig. 6 Shifted” 22-03 2106 39-10 57-18
Fig. 6 Equat® 2602 3102 6503 15005
Fig. 7 Shifted 318-17 27-1.4  29-05 —
Fig. 7 Equal 26-13 4506 — —

7
2 Downward shifted correspondence on the lelt side.
¢ Equidistance correspondence on the left side.

TABLEII

Effects of Mesh Size on the Orthogonality Characteristics

MDO-ADO {degrees}

Case 6x6 1Ix1t  16x16 21x21 31x31
Fig. 6a (H =0.25) 67-1.0 2807 2306 2106 2.1-0.5
Fig. 6b (H=035) 100-1.3 353-1.1 3.8-1.1 39-10 34-10
Fig. 6c (H =045) 135-26 7419 62-18 57-18 58-18
Fig. 7b (H =0.25) 70-19 25-1.2 2613 27-14 28-14

The orthogonality characteristics in terms of MDO and
ADQO are given in Table I for the 21 x 21 grid systems con-
sidered in Figs. 6 and 7 {both cases of the equidistance and
shifted specification on the left side). As we can see in
Table I, the orthogonality characteristics are generally good
for the grid systems in Fig. 6. As we can see in Fig. 6, the grid
system becomes coarser near the lower right corner as H
increases. Although the grid systems for the cases of equi-
distance specification at the left side are not given, we may
easily expect that the resulting grid systems become even
coarser near the lower right corner. Due to that effect, the
MDO values are larger for the cases of equidistance
specification than for the cases of shifted correspondence,

The effects of mesh size on the orthogonality charac-
teristics were also tested for the cases considered in
Figs. 6a—c and 7b. The results of MDO and ADO for each
case arc shown in Table II. As we can see in the table, the

TABLE III

Effects of Mesh Size on the Computation Time

CPU time (seconds)

Case 6x6 11x11 16x16 21x21 31x31
Fig. 6a (H =0.25) 1.6 6 13 24 55
Fig. 6c (H =045) 1.6 6 13 23 52
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FIG. 8. Orthogonal grid systems generated in a symmetric region (top side (y = 0.8 + 0.2 cos(27x)); bottom side (3= 0); left side {x = 0); right side
(x = 1)) (a) specified f = v*; (b) specified boundary correspondence on two sides {left side, equidistance; bottom side, x = £ — 0.08 sin(2x&)); (c) specified
boundary correspondence on three sides (top side (x = &); left and bottom sides, equidistance) with the control function ¢(#) = 3(vjv*)? — 2{vfv*)*.

orthogonality characteristics are not very sensitive to the
mesh size if the grid is finer than the 16 x 16 grid.

Typical computation times are listed in Table IIT as func-
tions of the mesh size for the cases considered in Figs. 6a
{H =025} and 6c (H=045). In these exampies, the com-
putation time is not sensitive to the geometry change but it
is a function of the number of grid points. The results show
that the computation time is approximately proportional to
the total number of grid points.

Thus far, we have seen how the orthogonality charac-
teristics of'a grid system depend on the factors such as the
geometry, the way of specification of boundary corre-
spondence, and the mesh size. In the following subsection,
further examples will be discussed with particular emphasis
on the effect of control function.

3.3. Orthogonal Grid Systems in a Symmetric Wavy Region

In this subsection, we consider orthogonal grid genera-
tion in a wavy region as shown in Fig. 8. Similar geometry
has been considered also by previous investigators [5, 6, &,
10, 11]. The top side of the boundary (é€2,) is given by

y=0.8 4+ 0.2 cos{2nx), O0g<x< L

For the control function ¢(v), we used again

TABLE IV
Orthogonality Characteristics for the Grid Systems in Fig. 8

In Fig. 8, one example (c) obtained by the present method
is shown with the orthogonal grid systems(a andb)
obtained by the method of Kang and Leai [4]. The grid
system (a) was obtained by using the specified distortion
function f(¢&, nj = v*, and (b) was obtained by specifying the
boundary correspondence on two sides as (x=0, y=5) at
302, and {(x =& — 0.08 sin(2r¢), y=0) at 4Q2;. On the other
hand, the grid system (c) was obtained by specifying the
boundary correspondence on three sides as (x=¢,
y=08+02cos(2n&)) on 882,, (x=0, y=n) on I2,, and
(x=¢, y=0) at 8Q2,. As we can see in the figure, the grid
systems -generated by Kang and Leal’s method are coarse
near the upper corners unless the boundary grid points at
the bottom side are specified to be very dense near the lower
corner points. However, in our new scheme, this problem
can be avoided casily because the grid spacing near the
upper corners can be controlied directly by specifving the
boundary correspondence as we want. The orthogonality
characteristics of the grid systems in Fig. 8 are shown in
Table 1V.

We tested also the adjustability of the grid spacing by
the control parameter when the same boundary corre-
spondence is specified. For the same region with the same
boundary correspondence as in Fig. 8, the orthogonal grid
systems were generated with the control function

q(u)=%[1 +sin (%ng)}+a |:1 —cos 2 (;v;) n:l,
(26)

TABLE ¥

Orthogonality Characteristics for the Grid Systems in Fig. 9

MDO-ADO (degrees)

MDO-ADQ (degrees)

{b) {c)

(a) {b) {c) (d)

7.7-0.3 8404 4.5-0.7

3906 6.4-1.2 3107 50-08
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FIG. 9. The effect of parameter “¢™ in the control function g{vy = {1 +sin((v/v*)n —n/2) }/2 + a{1 —cos 2(v/v*}x } on the orthogonal grid systems
(the same geometry and boundary correspondence as in Fig. 8¢): (a)a=0; (b)a=0.1;{c)a=—0.1;(d)ya=-02.

where g is the control parameter mentioned earlier in Sec-
tion 4. Several grid systems with various “a” are shown in
Fig. 9. When a =0 (Fig. 9a), the grid system is almost the
same as that obtained with the control function g(v)=
3{v/v*)* — 2(v/r*)*® (see Fig. 8c). When “g” is increased to
the positive value (a=0.1), the grid lines near £ =0.5 are
attracted upward and the grid spacing near the =0 line
(6€2,) becomes too coarse (Fig. 9b)). On the other hand,
when a negative value is used for “a” the grid lines are
attracted downward. For example, when a = — 0.1 (Fig. 9¢),
the resulting grid system has better grid distribution near
the bottom line than the case a =0 (Fig. 9a). However,
when a= —0.2 (Fig. 9d), the central part of “the grid
becomes too coarse to be useful in numerical analysis. The
orthogonality characteristics of the grid systems in Fig. 9
are generally good as shown in Table V. Especially, the grid
system in Fig. 9¢ has excellent orthogonality characteristics
in both MDO and ADO.

6. CONCLUSIONS

In the present paper, a new numerical scheme has been
proposed for generating an orthogonal grid in an arbitrary
simply-connected 2D domain. The scheme is based on the
concept of the decomposition of the global orthogonal
transform into consecutive mappings of a conformal map-
ping and an auxiliary orthogonal mapping, which was
suggested by Kang and Leal [4].

The method is non-iterative and flexible in the adjustment
of grid spacing. The grid spacing can be adjusted by
specifying the boundary correspondence up to three sides of
the boundary a priori. The method is also equipped with a

control function that provides further degrees of freedom in
grid spacing adjustment. The method has been applied very
successfully to various geometries such as asymmetric wavy
regions.

From a mathematical point of view, the proposed scheme
can also be regarded as a numerical implementation of the
constructive proof for the existence of a solution of the
orthogonal mapping problem in an arbitrary simple-
connected domain with the boundary correspondence
specified on three sides a priori. However, the question of an
existence proof for the problem of generating an orthogonal
grid with specified boundary correspondence on all four
sides still remains unanswered.
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